A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C

Medium Energy Physics Group http://ra.msstate.edu/~dd285/mep.html

> Amrendra Narayan Mississippi State University The JLab, Hall C, Compton Polarimeter Collaboration

This work is sponsored by Department of Energy (Office of Science)

Outline

Thanks: several slides adapted from talks by Dr.D.Dutta and Dr.R.D.Carlini

Parity Violating Electron Scattering (PVES)

The PVES program in Jefferson Lab, Hall-C includes high precision experiments such as the Qweak experiment and the 12 GeV Moller Experiment.

This entire program will rely on the <u>accurate measurement</u> of the polarization of the incident electron beam.

Example: The Qweak experiment aims to measure the weak charge of a proton with a precision of ~ 4%. This would need a 1% determination of the electron beam polarization.

The Qweak Experiment

The Qweak experiment aims to measure the weak charge of the proton with a precision of ~4% which needs a 1% determination of the electron beam polarization.

Thanks Dr.Roger Carlini, Principal Investigator, Q^pWeak Experiment @Jlab

The Compton Polarimeter

A high precision Compton Polarimeter is being constructed in Hall-C for a non-destructive continuous monitoring of the e⁻ beam polarization during the Qweak experiment and all other polarized e⁻ scattering experiments to follow after the upgrade of Jlab to 12 GeV capacity.

Diamond: A Closer look ...

Silicon is a typical choice for a multi-strip position sensitive electron detector

Property	Silicon	Diamond	
Band Gap (eV)	1.12	5.45	Low leakage current, short noise Fast signal collection Low capacitance, noise Radiation hardness
Electron/Hole mobility (cm²/Vs)	1450/500	2200/1600	
Saturation velocity (cm/s)	0.8×10 ⁷	2×10 ⁷	
Breakdown field (V/m)	3×10 ⁵	2.2×10 ⁷	
Dielectric Constant	11.9	5.7	
Displacement energy (eV)	13-20	43	
e-h creation energy (eV)	3.6	13	Smaller signal
Av. e-h pairs per MIP per micron	89	36	
Charge collection distance (micron)	full	~250	

Advantages: lower leakage current, faster, lower noise and rad. hard Disadvantages: smaller signal ~ 40% smaller

> Recall that the Compton edge is 2cm from beam for recoil e⁻

Thanks: Dr. R. Wallny (UCLA)

The Diamond Detector

- Diamond is known for its radiation hardness
- We chose Diamond (artificially grown by Chemical Vapor Deposition) for the detector

How does it work?

A Prototype Diamond Detector

- 10×10 mm²
- 500 μ m thick
- 15 strips ~450 μm wide

Metallization, Lithography & wire bonding done in High Energy Physics Lab at Ohio State University. Thanks Prof. Harris Kagan and his group at OSU.

Schematic of the Electronic Setup

Spectrum obtained by the Diamond detector

Threshold Voltage was low ~50 mV

Shaping Amplifier @20 gain

pedestal suppressed spectra from diamond

threshold set to 150 mV to suppress the background

Beta Particle Emission in Cs 137

A Silicon Detector with a Cs 137 Source was used to Calibrate the Multi-channel Analyzer in order to obtain the number of e-h pairs produced per MIP/ μ m in the detector.

Mean energy of emitted electrons : 174.3 keV End Point Energy of the electrons : 513.9 keV

The Si detector being used has

- Surface Area: 50mm²
- Thickness: 300 µm
- Voltage bias: 50 V

Two internal conversion electron peaks at 624 keV and 655 keV which are used to calibrate the MCA.

 $55Cs^{137}$ decays to $56Ba^{137} + .1e$

Conversion electron peaks of Cs137

20 gain, 100 hour spectrum

The peaks are fit to a Gaussian to determine the peak position and sigma in order to obtain a calibration constant.

Calibration Curve for the MCB

(G)

Slope (a): 39.2

Y-intercept (b)= -49.5

(N∑)

 $\Delta N (\Delta E) = a G + b$

G = Gain of the Amplifier ΔN = difference in Channel #

This calibration curve will be used to find the no. of electrons per MIP/ μ m for Si and compare that with Diamond.

Triggering with a Scintillator

Only those beta particles would be detected which pass the detector and reach the Scintillator.

Measuring only the minimum ionizing particles.

Next Steps

- Measure all 15 strips simultaneously
- Repeat the measurements in a real electron beam &
- Build the full size Diamond Detector

(4 planes, 21 x 21 mm², 200μm pitch) Mississippi State Univ., Univ. of Winnipeg, Univ. of Manitoba, TRIUMF

This work is supported by Department of Energy. Grant Number: DE-FG02-07ER41528: "Electron Detector for the Jefferson Lab Hall-C Compton Polarimeter" **QUESTIONS** !